BACHELOR OF SCIENCE IN COMPUTER ENGINEERING -COMPUTING HARDWARE & EMERGING ARCHITECTURES AND DEVICES

Code	Title	Credit Hours	
Wellness Requirement			
APPH 1040	Scientific Foundations of Health	2	
or APPH 10	The Science of Physical Activity and Health		
or APPH 10	Flourishing: Strategies for Well-being and Resilience	9	
Core IMPACTS	3		
Institutional P	riority		
CS 1301	Introduction to Computing ²	3	
Mathematics a	and Quantitative Skills		
MATH 1552	Integral Calculus ²	4	
Political Scien	ice and U.S. History		
HIST 2111	The United States to 1877	3	
or HIST 211	The United States since 1877		
or INTA 120	American Government in Comparative Perspective		
or POL 110	1Government of the United States		
or PUBP 30	Onerican Constitutional Issues		
Arts, Humanit	ies, and Ethics		
Any HUM ¹	•	6	
Communicatin	ng in Writing		
ENGL 1101	English Composition I	3	
ENGL 1102	English Composition II	3	
Technology, M	lathematics, and Sciences		
PHYS 2211	Principles of Physics I ²	4	
PHYS 2212	Principles of Physics II ²	4	
MATH 1551	Differential Calculus ²	2	
MATH 1554	Linear Algebra ²	4	
Social Science			
Any SS		9	
Field of Study			
CS 1331	Introduction to Object Oriented Programming ²	3	
CS 1332	Data Structures and Algorithms for Applications ²	3	
CS 2050	Introduction to Discrete Mathematics for Computer Science ²	3	
or CS 2051	Honors - Induction to Discrete Mathematics for Com Science	nputer	
ECE 2020	Digital System Design ²	3	
MATH 2550	Introduction to Multivariable Calculus ²	2	
MATH 2552	Differential Equations ²	4	
Major Require			
Economics Re	equirements ¹⁰		
Ethics ¹			

Total Credit H	ours	129
Free Electives ^{3,7}		7
Culminating Senior Design ⁵		3
Culminating Senior Design Options (Capstone)		
CS 4605	Mobile and Ubiquitous Computing	
CS 4476	Introduction to Computer Vision	
CS 4261	Mobile Applications and Services for Converged Networks	
CS 3630	Introduction to Perception and Robotics	
	the following (Devices in the Real World): ^{2,6}	3
ECE 4180	Embedded Systems Design	0
CS 3651	Prototyping Intelligent Devices	
	the following (Building Devices): ^{2,6}	4
	Design and Analysis of Algorithms, Honors	
CS 3510	Design and Analysis of Algorithms	3
CS 3251	Computer Networking I	3
CS 2340	Objects and Design	3
	Objects and Design	_
ECE 4150 Devices ^{2,6,9}	Cloud Computing	
ECE 4100	Advanced Computer Architecture	
	Introduction to Electronic Systems Packaging	
ECE 4452 ECE 4460		
ECE 4420 ECE 4452	IC Fabrication	
ECE 4130	Advanced VLSI Systems Digital Integrated Circuits	
	Embedded Computing Systems	
ECE 4180 ECE 4181	Embedded Computing Systems	
	Programming Embedded Systems	
CS 4220	f the following: ^{2,6}	9
ECE 3030	Physical Foundations of Computer Engineering	3
ECE 3150	VLSI and Advanced Digital Design	4
	ardware & Emerging Architectures ^{2,6,9}	
	Energy in Computation ²	
ECE 3058	for ECE Architecture, Systems, Concurrency, and	4
ECE 3005	Professional and Technical Communications	1
ECE 2040	Circuit Analysis ²	3
ECE 2035	Programming for Hardware/Software Systems 2	4
ECE 2031	Digital Design Laboratory ²	2
ECE 1100	ECE Discovery Studio	1
or CHEM 12	2 Chl émical Principles I	
CHEM 1310	Principles of General Chemistry for Engineers	4
Probability/St	atistics ^{4,9}	3

Pass-fail only allowed for Free Electives, ECE 1100, and ECE 3005.

Courses that are cross-listed with ECE must be taken under the ECE number. $\,$

- Student must complete one Ethics course during their program. For a complete list of Ethics courses, please see the Ethics Catalog page.
- ² Minimum grade of C required
- The following courses are not allowed: HPS 1XXX, PHYS 2XXX (AP Credit), ECE 3710, ECE 3741, LMC 2661, LMC 2662, LMC 3661,

LMC 3662, MATH 1113. Maximum of six credit hours of Special Problems or research may be applied toward the degree

- CEE 3770 or ISYE 3770 or MATH 3670 or ECE 3077 (Must be taken on Letter/Grade basis)
- Senior Design requirements may be satisfied in the following ways:
 - ECE two semester 4000 level ECE Culminating Design I + ECE Culminating Design II
 - Approved single-semester capstone (requires completion of the prerequisite ECE Design Fundamentals junior course, which counts as a free elective)

NOTE: Students may be able to use a VIP project in one of the above options to satisfy Senior Design provided they meet the requirements as outlined at the following VIP page. (see https://vip.gatech.edu/how-vip-credits-count)

- No single course may be used to satisfy requirements in both selected threads.
 - If a course is required in both threads, it must be satisfactorily completed once and the second occurrence shall be replaced by an equivalent number of ECE/CS 3000/4000 elective hours (excluding courses used to satisfy senior design or probability & statistics requirements).
 - 2. If a course is **required** in one thread and **optional** (elective or pick list) in the second thread, it must be completed as required and may not be used to satisfy any element of the second thread.
 - 3. If a course is **optional** (elective or pick list) in both threads, it may be counted once toward either thread, but not toward both.
- The total number of available free elective hours will depend on choices made in the thread as well as the choice to fulfill Senior Design requirements according to note (5)
- ECE electives are subject to School approval and must satisfy the following constraints:
 - All ECE courses at the 3000-level or higher, including approved special topics course. Exclusions: Junior Design Fundamentals Course (prerequisite for single-semester capstone) and ECE 3077 (used to satisfy Probability and Statistics requirement).
 - Special problems, undergraduate research, and similar courses may not be included, except for three credit hours for one ECE Undergraduate Research sequence, either ECE 3951+ ECE 3952 or ECE 4951+ ECE 4952. For students completing the Research Option but not an ECE UROP sequence, three credit hours for ECE 4699 may be included.
- Hours satisfying Probability & Statistics requirement and threads requirements may share with minor requirements.
- Engineering students must complete one of the following economics classes: ECON 2100,ECON 2101,ECON 2105,ECON 2106. The course will also satisfy 3 hours of Core IMPACTS Social Science courses.